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High Resolution Methods
for Time Dependent Problems

with Piecewise Smooth Solutions∗

Eitan Tadmor†

Abstract

A trademark of nonlinear, time-dependent, convection-dominated prob-
lems is the spontaneous formation of non-smooth macro-scale features, like
shock discontinuities and non-differentiable kinks, which pose a challenge for
high-resolution computations. We overview recent developments of modern
computational methods for the approximate solution of such problems. In
these computations, one seeks piecewise smooth solutions which are realized
by finite dimensional projections. Computational methods in this context
can be classified into two main categories, of local and global methods. Local
methods are expressed in terms of point-values (– Hamilton-Jacobi equations),
cell averages (– nonlinear conservation laws), or higher localized moments.
Global methods are expressed in terms of global basis functions.

High resolution central schemes will be discussed as a prototype example
for local methods. The family of central schemes offers high-resolution “black-
box-solvers” to an impressive range of such nonlinear problems. The main in-
gredients here are detection of spurious extreme values, non-oscillatory recon-
struction in the directions of smoothness, numerical dissipation and quadra-
ture rules. Adaptive spectral viscosity will be discussed as an example for
high-resolution global methods. The main ingredients here are detection of
edges in spectral data, separation of scales, adaptive reconstruction, and spec-
tral viscosity.
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2 E. Tadmor

1. Introduction– piecewise smoothness

A trademark of nonlinear time-dependent convection-dominated problems is
the spontaneous formation of non-smooth macro-scale features which challenge
high-resolution computations. A prototype example is the formation of shock dis-
continuities in nonlinear conservation laws,

∂

∂t
u(x, t) + ∇x · f(u(x, t)) = 0, u := (u1, . . . , um)>. (1.1)

It is well known, e.g., [9], that solutions of (1.1) cease to be continuous, and (1.1)
should be interpreted in a weak sense with the derivatives on the left as Radon
measures. This requires clarification. If u(x, t) and v(x, t) are two admissible solu-
tions of (1.1) then the following stability estimate is sought (here and below α, β, ...
stand for different generic constants),

‖u(·, t) − v(·, t)‖ ≤ αt‖u(·, 0) − v(·, 0)‖. (1.2)

Such estimates with different norms, ‖ · ‖, are playing a key role in the linear
setting — both in theory and computations. For linear hyperbolic systems, for
example, (1.2) is responsible for the usual L2-stability theory, while the stability of
parabolic systems is often measured by the L∞-norm, consult [14]. But for nonlinear
conservation laws, (1.2) fails for any Lp-norm with p > 1. Indeed, comparing u(x, t)
with any fixed translation of it, v(x, t) := u(x+h, t), the Lp version of (1.2) implies

‖∆+hu(·, t)‖Lp(Rd) ≤ αt‖∆+hu(·, 0)‖Lp(Rd), ∆+hu(·, t) := u(· + h, t) − u(·, t).
For smooth initial data, however, the bound on the right yields ‖∆+hu(·, t)‖Lp ≤
αt|h|, which in turn, for p > 1, would lead to the contradiction that u(·, t) must
remain continuous. Therefore, conservation laws cannot satisfy the Lp-stability es-
timate (1.2) after their finite breakdown time, except for the case p = 1. The latter
leads to Bounded Variation (BV) solutions, ‖u(·, t)‖BV := sup ‖∆+hu(·, t)‖L1/|h| ≤
αt < ∞, whose derivatives are interpreted as the Radon measures mentioned above.
BV serves as the standard regularity space for admissible solutions of (1.1). A com-
plete BV theory for scalar conservation laws, m = 1, was developed Kružkov. Fun-
damental results on BV solutions of one-dimensional systems, d = 1, were obtained
by P. Lax, J. Glimm, and others. Consult [2] for recent developments. Relatively
little is known for general (m − 1) × (d − 1) > 0, but cf., [12].

We argue that the space of BV functions is still too large to describe the ap-
proximate solutions of (1.1) encountered in computations. Indeed, in such compu-
tations one does not ’faithfully’ realize arbitrary BV functions but rather, piecewise
smooth solutions. We demonstrate this point in the context of scalar approximate
solutions, vh(x, t), depending on a small computational scale h ∼ 1/N . A typical
error estimate for such approximations reads, [4]

‖vh(·, t) − u(·, t)‖L1
loc

(R) ≤ ‖vh(·, 0) − u(·, 0)‖L1
loc

(R) + αth
1/2. (1.3)

The convergence rate of order 1/2 is a well understood linear phenomena, which is
observed in computations1. The situation in the nonlinear case is different. The

1Bernstein polynomials, BN (u), provide a classical example of first-order monotone approxi-
mation with L1-error of order (‖u‖BV /N)1/2. The general linear setting is similar, with improved
rate ∼ hr/(r+1) for r-order schemes.
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optimal convergence rate for arbitrary BV initial data is still of order one-half,
[15], but actual computations exhibit higher-order convergence rate. The apparent
difference between theory and computations is resolved once we take into account
piecewise smoothness. We can quantify piecewise smoothness in the simple scalar
convex case, where the number of shock discontinuities of u(·, t) is bounded by the
finitely many inflection points of the initial data, u(x, 0). In this case, the singular
support of u(·, t) consists of finitely many points where S(t) = {x | ∂xu(x, t) ↓ −∞}.
Moreover, the solution in between those point discontinuities is as smooth as the
initial data permit in the sense that for arbitrary L’s, L >> 1, we have, [21]

sup
x∈SL(t)

|∂p
xu(x, t)| ≤ epLT sup

x∈SL(0)

|∂p
xu(x, 0)|+ConstL, SL(t) := {x | ∂xu(x, t) ≥ −L}.

If we let d(x, t) := dist(x,S(t)) denote the distance to S(t), then according to [19],
the following pointwise error estimate holds, |vh(x, t) − u(x, t)| ≤ αth/d(x, t), and
integration yields the first-order convergence rate

‖vh(·, t) − u(·, t)‖L1
loc

(R) ≤ αth| log(h)|. (1.4)

There is no contradiction between the optimality of (1.3) and (1.4). The former ap-
plies to arbitrary BV data, while the latter is restricted to piecewise smooth data and
it is the one encountered in actual computations. The general situation is of course,
more complicated, with a host of macro-scale features which separate between re-
gions of smoothness. Retaining the invariant properties of piecewise smoothness in
general problems is a considerable challenge for high-resolution methods.

2. A sense of direction

A computed approximation is a finite dimensional realization of an underlying
solution which, as we argue above, is viewed as a piecewise smooth solution. To
achieve higher accuracy, one should extract more information from the smooth parts
of the solution. Macro-scale features of non-smoothness like shock discontinuities,
are identified here as barriers for propagation of smoothness, and stencils which
discretize (1.1) while crossing discontinuities are excluded because of spurious Gibbs’
oscillations. A high resolution scheme should sense the direction of smoothness.

Another sense of directions is dictated by the propagation of information gov-
erned by convective equations. Discretizations of such equations fall into one of
two, possibly overlapping categories. One category of so-called upwind schemes
consists of stencils which are fully aligned with the local direction of propagating
waves. Another category of so-called central schemes consists of two-sided stencils,
tracing both right-going and left-going waves. A third possibility of stencils which
discretize (1.1) ’against the wind’ is excluded because of their inherent instability,
[14]. A stable scheme should sense the direction of propagation.

At this stage, high resolution stable schemes should compromise between two
different sets of directions, where propagation and smoothness might disagree. This
require essentially nonlinear schemes, with stencils which adapt their sense of direc-
tion according to the computed data. We shall elaborate the details in the context
of high-resolution central scheme.
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3. Central schemes

We start with a quotation from [14, §12.15], stating “In 1959, Godunov de-
scribed an ingenious method for one-dimensional problems with shocks”. Godunov
scheme is in the crossroads between the three major types of local discretizations,
namely, finite-difference, finite-volume and finite-element methods. The ingenuity
of Godunov’s approach, in our view, lies with the evolution of a globally defined
approximate solution, vh(x, tn), replacing the prevailing approach at that time of
an approximate solution which is realized by its discrete gridvalues, vν(tn). This
enables us to pre-process, to evolve and to post-process a globally defined approx-
imation, vh(x, tn). The main issue is how to ’manipulate’ such piecewise smooth
approximations while preserving the desired non-oscillatory invariants.

Godunov scheme was originally formulated in the context of nonlinear con-
servation laws, where an approximate solution is realized in terms of a first-order
accurate, piecewise-constant approximation

vh(x, tn) := Ahv(x, tn) :=
∑

ν

v̄ν(tn)1Iν (x), v̄ν(tn) :=
1
|Iν |

∫

Iν

v(y, tn)dy.

The cell averages, v̄ν , are evaluated over the equi-spaced cells, Iν := {x \ |x−xν | ≤
h/2} of uniform width h ≡ ∆x. More accurate Godunov-type schemes were devised
using higher-order piecewise-polynomial projections. In the case of one-dimensional
equi-spaced grid, such projections take the form

Phv(x) =
∑

ν

pν(x)1Iν (x), pν(x) = vν + vν
′
(x − xν

h

)
+

1
2
vν

′′
(x − xν

h

)2

+ . . . .

Here, one pre-process the first-order cell averages in order to reconstruct accurate
pointvalues, vν , and say, couple of numerical derivatives vν

′/h, vν
′′/h2, while the

original cell averages, {v̄ν}, should be preserved, AhPhvh = Ahvh. The main
issue is extracting information in the direction of smoothness. For a prototype
example, let ∆+v̄ν and ∆−v̄ν denote the usual forward and backward differences,
∆±vν := ±(v̄ν±1 − v̄ν). Starting with the given cell averages, {v̄ν}, we set vν = v̄ν ,
and compute

vν
′ = mm(∆+v̄ν , ∆−v̄ν), mm(z1, z2) :=

sgn(z1) + sgn(z2)
2

min{|z1|, |z2|}. (3.1)

The resulting piecewise-linear approximation is a second-order accurate, Total Vari-
ation Diminishing (TVD) projection, ‖Phvh(x)‖BV ≤ ‖vh(x)‖BV . This recipe of
so-called minmod numerical derivative, (3.1), is a representative for a large library
of non-oscillatory, high-resolution limiters. Such limiters dictate discrete stencils in
the direction of smoothness and hence, are inherently nonlinear. Similarly, nonlinear
adaptive stencils are used in conjunction with higher-order methods. A description
of the pioneering contributions in this direction by Boris & Book, A. Harten, B.
van-Leer and P. Roe can be found in [10]. The advantage of dealing with globally
defined approximations is the ability to pre-process, to post-process and in partic-
ular, to evolve such approximations. Let u(x, t) = uh(x, t) be the exact solution
of (1.1) subject to uh(x, tn) = Phvh(x, tn). The exact solution lies of course out-
side the finite computational space, but it could be realized in terms of its exact
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cell averages, vh(x, tn+1) =
∑

ν v̄ν(tn+1)1Iν (x). Averaging is viewed here a simple
post-processing. Two prototype examples are in order.
Integration of (1.1) over control volume Iν × [tn, tn+1], forms a local stencil which
balances between the new averages, {v̄ν(tn+1)}, the old ones, {v̄ν+k(tn)}, and the
fluxes across the interfaces along xν±1/2 × [tn, tn+1]. In this case, the solution along
these discontinuous interfaces is resolved in terms of Riemann solvers. Since one
employs here an exact evolution, the resulting Godunov-type schemes are upwind
scheme. The original Godunov scheme based on piecewise constant projection is
the forerunner of all upwind schemes. As an alternative approach, one can realize
the solution u(x, tn+1), in terms of its exact staggered averages, {v̄ν+1/2(tn+1)}.
Integration of (1.1) over the control volume Iν+1/2 × [tn, tn+1] subject to piecewise
quadratic data given at t = tn, u(x, tn) = Phvh(x, tn), yields

v̄ν+1/2(tn+1) =
1
2

(
v̄ν(tn) + v̄ν+1(tn)

)
+

+
1
8

(
vν

′(tn) − v′ν+1(t
n)

)
+

∆t

∆x

(
F

n+1/2
ν+1 − F n+1/2

ν

)
, (3.2)

where F
n+1/2
ν stands for the averaged flux, F

n+1/2
ν =

∫ tn+1

tn f(u(xν , τ)dτ/∆t. Thanks
to the staggering of the grids, one encounters smooth interfaces xν × [tn, tn+1], and
the intricate (approximate) Riemann solvers are replaced by simpler quadrature
rules. For second-order accuracy, for example, we augment (3.2) with the mid-
point quadrature

F n+1/2
ν = f(vν(tn+1/2)), vν(tn+1/2) = vν(tn) − ∆t

2∆x
f(vν(tn))′. (3.3)

Here, the prime on the right is understood in the usual sense of numerical dif-
ferentiation of a gridfunction – in this case the flux {f(vν(tn))}ν . The resulting
second-order central scheme (3.3),(3.2) was introduced in [13]. It amounts to a sim-
ple predictor-corrector, non-oscillatory high-resolution Godunov-type scheme. For
systems, one implements numerical differentiation for each component separately.
Discontinuous edges are detected wherever cell-averages form new extreme values,
so that vν

′(tn) and f(vν(tn))′ vanish, and (3.3),(3.2) is reduced to the forerunner of
all central schemes — the celebrated first-order Lax-Friedrichs scheme, [10]. This
first-order stencil is localized to the neighborhood of discontinuities, and by assump-
tion, there are finitely many them. In between those discontinuities, differentiation
in the direction of smoothness restores second-order accuracy. This retains the
overall high-resolution of the scheme. Consult Figure 1 for example.

Similarly, higher-order quadrature rules can be used in connection with higher-
order projections, [3], [11]. A third-order simulation is presented in Figure 2. Finite-
volume and finite-element extensions in several space dimensions are realized over
general, possibly unstructured control volumes, Ων×[tn, tn+1], which are adapted to
handle general geometries. Central schemes for 2D Cartesian grids were introduced
in [6], and extended to unstructured grids in [1]. A similar framework based on
triangulated grids for high-resolution central approximations of Hamilton-Jacobi
equations was described in [4] and the references therein.

Central schemes enjoy the advantage of simplicity – they are free of (approx-
imate) Riemann solvers, they do not require dimensional splitting, and they apply



6 E. Tadmor

to arbitrary flux functions2 without specific references to eigen-decompositions, Ja-
cobians etc. In this context, central schemes offer “black-box solvers” for an impres-
sive variety of convection-dominated problems. At the same time, central schemes
maintain high-resolution by pre -and post-processing in the direction of smoothness.
References to diverse applications such as simulations of semi-conductors models,
relaxation problems, geometrical optics and multiphase computations, incompress-
ible flows, polydisperse suspensions, granular avalanches MHD equations and more
can be found in [16].

2 1 0 1 2 3 4 5
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Figure 1: Second-order central scheme
simulation of semiconductor device
governed by 1D Euler-Poisson equa-
tions. Electron velocity in 107 cm/s
with N = 400 cells.
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Figure 2: Third-order central scheme
simulation of 1D MHD Riemann prob-
lem. with N = 400 cells. The y-
magnetic field at t = 0.2.

The numerical viscosity present in central schemes is of order O (∆x)2r

∆t . It is
suitable for the convective regime where ∆t ∼ ∆x, but it is excessive when a small
time step is enforced, e.g., due to the presence of diffusion terms. To overcome this
difficulty, a new family of central schemes was introduced in [7] and was further
refined in [8]. Here, the previous staggered control volumes, Iν+1/2 × [tn, tn+1],
is replaced by the smaller — and hence less dissipative, Jν+1/2 × [tn, tn+1], where
Jν+1/2 := xν+1/2 + ∆t × [a−, a+] encloses the maximal cone of propagation, a± ≡
a±

ν+1/2 =
(
max
min

)
k
λ±

k (fu). The fact that the staggered grids are O(∆t) away from
each other, yields central stencils with numerical viscosity of order O(∆x2r−1).
Being independent of ∆t enables us to pass to the limit ∆t ↓ 0. The resulting semi-
discrete high-resolution central scheme reads ˙̄vν(t) = −(fν+1/2(t)− fν−1/2(t))/∆x,
with a numerical flux, fν+1/2, expressed in terms of the reconstructed pointvalues,
v± ≡ v±ν+1/2 = Phvh(xν+1/2±, t),

fν+1/2(t) :=
a+f(v−) − a−f(v+)

a+ − a− + a+a− v+ − v−

a+ − a− . (3.4)

2An instructive example is provided by gasdynamics equations with tabulated equations of
state.
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Instructive examples are provided in Figures 3 and 4.

-1

-0.5
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0.5

1

-3 -2 -1 0 1 2 3

Figure 3: Convection-diffusion eq.
ut + (u2)x/2 = (ux/

√
1 + u2

x)x sim-
ulated by (3.4),(3.1), with 400 cells.

x

y

Figure 4: Third-order central scheme
for 2D Riemann problem. Density con-
tour lines with 400× 400 cells.

4. Adaptive spectral viscosity methods

Godunov-type methods are based on zeroth-order moments of (1.1). In each
time step, one evolves one piece of information per spatial cell — the cell aver-
age. Higher accuracy is restored by numerical differentiation in the direction of
smoothness. An alternative approach is to compute higher-order moments, where
the cell averages, v̄ν , and say, couple of numerical derivatives, vν

′, vν
′′ are evolved in

time. Prototype examples include discontinuous Galerkin and streamline-diffusion
methods, where several local moments per computational cell are evolved in time,
consult [4] and the references therein. As the number of projected moments in-
crease, so does the size of the computational stencil. At the limit, one arrives at
spectral methods based on global projections,

vN (x, t) = PNv(x, t) :=
∑

|k|≤N

v̂k(t)φk(x), v̂k := 〈v(·, t), φk(·)〉.

Here, φk(x) are global basis functions, φk = eikx, Tk(x), ... and v̂k are the moments
induced by the appropriately weighted, possibly discrete inner-product 〈·, ·〉. Such
global projections enjoy superior resolution — the error ‖v(·) − PNv(·)‖ decays as
fast as the global smoothness of v(·) permits. With piecewise smooth solutions,
however, we encounter first-order spurious Gibbs’ oscillations throughout the com-
putational domain. As before, we should be able to pre- and post-process piecewise
smooth projections, recovering their high accuracy in the direction of smoothness.
To this end, local limiters are replaced by global concentration kernels of the form,
[5], Kη

NvN (x) = πω(x)
N

∑
|k|≤N η

(
|k|
N

)
v̂k(φk(x))x, where η(·) is an arbitrary unit

mass C∞[0, 1] function at our disposal. Detection of edges is facilitated by sepa-
ration between the O(1) scale in the neighborhoods of edges and O(hr) scales in
regions of smoothness, KNvN (x) ∼ [v(x)] + O(Nd(x))−r . Here, [v(x)] denotes the
amplitude of the jump discontinuity at x (– with vanishing amplitudes signaling
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smoothness), and d(x) is the distance to the singular support of v(·). Two proto-
type examples in the 2π-periodic setup are in order. With η(ξ) ≡ 1 one recovers a
first-order concentration kernel due to Fejer. In [5] we introduced the concentration
kernel, ηexp(ξ) :∼ exp{β/ξ(1 − ξ)}, with exponentially fast decay into regions of
smoothness. Performing the minmod limitation, (3.1), mm{K1

NvN (x), Kexp
N vN (x)},

yields an adaptive, essentially non-oscillatory edge detector with enhanced separa-
tion of scales near jump discontinuities, e.g., Figure 7. Once macro-scale features
of non-smoothness were located, we turn to reconstruct the information in the di-
rection of smoothness. This could be carried out either in the physical space using
adaptive mollifiers, Ψθ,p, or by nonlinear adaptive filters, σp. In the 2π-periodic
case, for example, we set Ψ ∗ PNv(x) := 〈Ψθ,p(x − ·),PNv(·)〉 where Ψ is expressed
in terms of the Dirichlet kernel, Dp(y) := sin(p+1/2)πy

2 sin(πy/2) ,

Ψθ,p(y) =
1
θ
ρ
(y

θ

)
Dp(

(y

θ

)
, ρ ≡ ρβ(y) := eβy2/(y2−1)1[−1,1](y). (4.1)

Mollifiers encountered in applications maintain their finite accuracy by localization,
letting θ ↓ 0. Here, however, we seek superior accuracy by the process of cancellation
with increasing p ↑. To guarantee that the reconstruction is supported in the
direction of smoothness, we maximize θ in terms of the distance function, θ(x) =
d(x), so that we avoid crossing discontinuous barriers. Superior accuracy is achieved
by the adaptive choice p :∼ d(x)N , which yields, [20],

|Ψ{d(x),d(x)N} ∗ PNv(x) − v(x)| ≤ Const.(d(x)N)re−γ
√

d(x)N .

The remarkable exponential recovery is due to the Gevrey regularity of ρβ ∈ G2 and
Figure 5 demonstrates such adaptive recovery with exponential convergence rate
recorded in Figure 6. An analogous filtering procedure can be carried out in the
dual Fourier space, and as before, it hinges on a filter with an adaptive degree p

Ψ ∗ PNv(x) :=
∑

|k|≤N

σp

( |k|
N

)
v̂keikx, σp(ξ) = eβξp/(ξ2−1), p ∼ (d(x)N)r/r+1.
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Figure 5: Adaptive reconstruction of
the piecewise smooth data from its us-
ing N = 128-modes using (4.1).
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Equipped with this toolkit to process spectral projections of piecewise smooth
data, we turn to consider their time evolution. Godunov-type methods are based
evolution of cell averages. Cell averaging is dissipative, but projections involving
higher-order moments are not. The following example, taken from [18] shows what
goes wrong with global projections. We consider the Fourier method for 2π-periodic
inviscid Burgers’ equation, ∂tvN (x, t)+∂xSN(v2

N (·, t))/2 = 0. Orthogonality implies
that ‖vN(·, t)‖2

L2 is conserved in time, and in particular, that the Fourier method
admits a weak limit, vN (·, t) ⇀ v̄(t). At the same time, v̄(t) is not a strong limit,
for otherwise it will contradict the strict entropy dissipation associated with shock
discontinuities. Lack of strong convergence indicates the persistence of spurious
dispersive oscillations, which is due to lack of entropy dissipation. With this in mind,
we turn to discuss the Spectral Viscosity (SV) method, as a framework to stabilize
the evolution of global projections without sacrificing their spectral accuracy. To
this end one augments the usual Galerkin procedure with high frequency viscosity
regularization

∂

∂t
vN (x, t) + PN∇x · f(vN (·, t)) = −N

∑

|k|≤N

σ
( |k|

N

)
v̂k(t)φk(x), (4.2)

where σ(·) is a low-pass filter satisfying σ(ξ) ≥
(
|ξ|2s − β

N

)+

. Observe that the
SV is only activated on the highest portion of the spectrum, with wavenumbers
|k| > γN (2s−1)/2s. Thus, the SV method can be viewed as a compromise between
the stable viscosity approximations corresponding to s = 0 but restricted to first
order, and the spectrally accurate yet unstable spectral method with s = ∞.
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Figure 7: Enhanced detection of edges
with v(x) given by v(x) = −sgnx ·
cos(x + x · sgnx/2)1[−π,π](x).
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Figure 8: Legendre SV solution of in-
viscid Burgers’ equation. Reconstruc-
tion in the direction smoothness.

The additional SV on the right of (4.2) is small enough to retain the formal spectral
accuracy of the underlying spectral approximation. At the same time, SV is large
enough to enforce a sufficient amount of entropy dissipation and hence, to prevent
the unstable spurious Gibbs’ oscillations. The original approach was introduced
in [18] in conjunction with second-degree dissipation, s = 1. Extensions to several
space variables, non-periodic expansions, further developments of hyper SV methods
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with 1 < s < ∞, and various applications can be found in [17]. We conclude with
an implementation of adaptive SV method for simple inviscid Burgers’ in Figure 8.
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[15] F. Şabac, The optimal convergence rate of monotone finite difference methods for
hyperbolic conservation laws, SIAM J. Numer. Anal., 34 (1997), 2306–2318.

[16] E. Tadmor, http://www.math.ucla.edu/˜tadmor/centralstation/
[17] E. Tadmor, http://www.math.ucla.edu/˜tadmor/spectral viscosity/
[18] E. Tadmor, Convergence of spectral methods for nonlinear conservation laws, SIAM

J. Numer. Anal., 26 (1989), 30–44.
[19] E. Tadmor & T. Tang, Pointwise error estimates for scalar conservation laws with

piecewise smooth solutions, SIAM J. Numer. Anal., 36 (1999), 1739–1758.
[20] E. Tadmor & J. Tanner, Adaptive mollifiers – high resolution recovery of piecewise

smooth data from its spectral information, Found. Comput. Math., 2 (2002) 155–189.
[21] E. Tadmor & T. Tassa, On the piecewise regularity of entropy solutions to scalar

conservation laws, Comm. PDEs, 18 (1993), 1631–1652.


